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Corrections to “JPEG Dequantization
Array for Regularized Decompression”

Wilfried Philips

Abstract—An error in the theoretical derivations leading up to the main
equation of the above correspondence by Prostet al. is pointed out, and
corrections are presented. Due to the error, the experimentally obtained
“optimal” parameters are really only suboptimal.

Index Terms—Artifact reduction, JPEG, regularization.

I. INTRODUCTION

In the above mentioned correspondence1 by Prostet al., (7) relates
the mean squared quantization error of a JPEG codec in the image
domain to the corresponding error in the DCT domain. The original
version of (7) should be replaced with the following correction:
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The factorQ2(k; l) was missing in the original equation, but is
required because the numbersNi(k; l) are scaledversions of the
DCT coefficients ofni(m; n), which should be inversely scaled
before applying Parseval’s theorem.

The correction of (7) also impacts the derivations of (14), (16),
(17), and (19). The most important of these equations is (19), which
is the main result of the paper. The correct version of this equation is
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Note the absence of the factorQ2(k; l), which was present in the
denominator of the original (19).

We note thatD2M(k; l) is the Fourier-transform of a highpass
filter d(m; n) that in principle can be chosen freely (of course some
filters will perform better than others). By choosingD2M(k; l) as
D2M(k; l) = Q(k; l)D0

2M(k; l), whereD0

2M(k; l) is the value of
D2M(k; l) in the original paper, and substituting in (2), we find that
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which has the same functional form as the erroneous (19). This
suggests that the numerical results in the original paper can be saved
simply by choosing a different filterD2M(k; l). However, this is not
correct because the parameter�i depends onD2M(k; l).

However, even though the original derivations result in a subop-
timal solution, the experimental results indicate that the proposed
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method has some beneficial effects. This is somewhat surprising
because the proposed method (which effectively scales the quantized
DCT-coefficients before inversely transforming them) is basically an
image-adapted lowpass filter implemented in the DCT-domain, which
means that it is anintrablock filter, i.e., it doesnot filter over the
block boundaries.

To conclude this comment, we present a possible explanation
for the reduction of the block effects. First we note that scaling
the quantized DCT coefficients is equivalent to filtering the even-
symmetric extension of the reconstructed image block by a lowpass
filter. In general, the even-symmetric extension ofany image block
is discontinuous at the block boundaries. In other words, such an
extension contains artificial high-frequency components near the
block boundaries. The proposed method smooths these artificial
discontinuities and this effectively reduces the gradient magnitude
near the block boundaries more than elsewhere. The corresponding
extra smoothing near the block boundaries may account for the
reduced block effects.

Reproducing Kernel Hilbert Space Method
for Optimal Interpolation of Potential Field Data

Jonathan Maltz, Robert De Mello Koch, and Andrew Willis

Abstract—The RKHS-based optimal image interpolation method, pre-
sented by Chen and de Figueiredo (1993), is applied to scattered potential
field measurements. The RKHS which admits only interpolants consistent
with Laplace’s equation is defined and its kernel, derived. The algorithm
is compared to bicubic spline interpolation, and is found to yield vastly
superior results.

Index Terms— Interpolation, potential field, reproducing kernel,
Sobolev.

I. INTRODUCTION

Many applications in geophysics, such as mineral exploration, rely
on surveys of the Earth’s local magnetic field for the detection of
anomalies that reveal underlying geological features. In aeromagnetic
imaging, field measurements are typically obtained from aeroplane-
mounted magnetometers that sample the field at intervals along the
flight path. Entire data sets, which consist of measurements collected
over many parallel flight paths, typically exhibit large sample spacing
irregularity and must undergo interpolation onto a regular grid to
facilitate display and interpretation.

The techniques most commonly employed commercially rely on
spline fitting algorithms which yield interpolants which are smooth,
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but which do not conform to a relevant physical model. The degree
of smoothness must be manually set, and its specification is thus
largely based on the subjective interpretation of the operator [1]. In
addition, images output by these methods typically contain artifacts
which render interpretation difficult. For example, long features
perpendicular to the flight lines are typically split into several smaller
features centered on each data point. This is termed theherringbone
effect.

Spline methods other than standard bicubic spline fitting have
been proposed. The minimum curvature method (MCM), produces
interpolating surfaces that satisfy thin metallic sheet models [2]. This
method exhibits similar limitations to bicubic spline techniques, and
introduces the additional problem of surface oscillation in undercon-
strained areas. However, this problem, as well as the herringbone
effect, has been ameliorated by the induction of variable spline
tension [3], [1]. Unfortunately the user must still specify the spline
tension factor.

The technique of kriging, or least-squares collocation, attempts to
estimate the field at an interpolated point as a linear combination
of that at neighboring sample points. Its advantage over a simple
weighted-average method is the incorporation of a semivariogram
describing spatial covariance. An anisotropic kriging algorithm has
been proposed to overcome the herringbone effect in cases where
the area surveyed contains anomalies which exhibit a preferred
orientation [1]. The main drawback of this method is the need to
first interpolate the data using an isotropic method in order to select
an appropriate spatial model. This calls for a subjective interpretive
step, after which the covariance matrix for the anisotropic kriging
algorithm may be formulated.

In another approach to kriging, a three-dimensional (3-D) fractal
stochastic model of the Earth’s crust is developed for use in speci-
fying the covariance matrix for the kriging algorithm. The resultant
interpolants consequently have the same form of self-scaling power
spectra as the crustal model, and are shown to possess a justifiable
degree of smoothness [4].

None of the techniques described thus far exploit the important
a priori knowledge that the interpolant of the potential field must
lie on a harmonic surface, thus satisfying Laplace’s equation [5].
Several that exploit this constraint are based on the equivalent source
theorem which states that a two-dimensional (2-D) source distribution
may be constructed at any depth to synthesize a field measured at the
observation plane [5], [6]–[8]. Accordingly, interpolation is effected
by creating an equivalent layer of regularly gridded sources whose
contributions sum to the values at each measurement point. This
method has been shown to yield results vastly superior to MCM
[5], [9]. However, the results obtained depend strongly on the depth
chosen for the equivalent layer. Too low a layer tends to precipitate
instability, while layers which are too high induce aliasing [7]. The
number of equivalent sources used must also be preselected. The
severe computational requirements of the method have prompted
the development of a technique which forms a smaller equivalent
measurement set. The set is chosen such that the surface fitting these
points fits the remaining points within a specified tolerance. This
iterative method greatly reduces the computational burden [5].

The purpose of the work presented here is to develop a technique
of potential field interpolation which produces an interpolant that sat-
isfies Laplace’s equation in an optimal sense and requires no heuristic
selection of algorithm parameters. We show that this stipulation leads
to an algorithm which produces interpolants of physically justifiable
smoothness, and devoid of commonly encountered artifacts. Our
approach is based on that of Chen and de Figueiredo (1993), who
present a unified approach to optimal interpolation of images. The
method they propose may be used to interpolate images generated by

a processes which can be represented using a linear partial differential
equation (LPDE) models.

We begin by illustrating how the interpolation problem at hand may
be expressed in such form that the method of Chen and Figueiredo
may be applied. Section III follows with a justification for the choice
of the optimality criterion. The kernel of the relevant RKHS is then
derived, and the numerical implementation of the algorithm discussed.
The performance of the resulting algorithm is consequently evaluated.

II. FORMULATION OF THE INTERPOLATION PROBLEM

A. Stochastic Image Model

For reasons which will be later explained, it is useful to model
the image as the output of a system having Gaussian white noise
innovation. While [10], allow this innovationu(t) to evolve in
time, we consider a processu(z) which evolves along the axis
perpendicular to the interpolation plane.

ConsiderL; an LPDE operator which acts on a time varying
image signalf(x; y; z) to produce a zero-mean Gaussian white noise
process. This may be expressed as [10]

Lf(x; y; z) = u(x; y; z): (1)

SinceL summarizes our knowledge of the image creation process,
its form is known. Furthermore, the measurements yield values
faijg

n
j=1;

l
i=1; which correspond to points scattered, perhaps irreg-

ularly, in space. Thus [10], [11]

f(xij ; yij ; zi) = aij j = 1; � � � ; ni; i = 1; � � � ; l: (2)

It is required to reconstruct thatf(x; y; z) which satisfies both the
image generation model of (1), and honors the measurement points
according to (2).

B. Boundary Conditions

For generality, it is desirable that the most general knowledge
of the image signal at its boundaries may be incorporated into the
reconstruction. First, we stipulate that the image is defined in the
standard Hilbert space,L2; where
 is the x-y domain containing
the image, andI is the interval of support along the vertical(z) axis.
The basis for the Hilbert space may be taken as any set of orthogonal
complete functions which obey the boundary conditions

f(x; y; 0) = 00(x; y); f(x; y; Z) =  
Z
0 (x; y);

f(x; y; z)j� =�0(x; y; z) (3)

where 0;  Z ; and �0 are specified continuous functions;� is the
spatial boundary of
; the x-y domain of the image; andZ is the
position of interpolated plane along thez-axis, relative to the sources.

III. M INIMUM ENERGY SOLUTION AS OPTIMALITY CRITERION

In (1), the operatorL is known, whilef(x; y; z) can be specified
at certain points and at the boundaries. The processu(x; y; z) is,
however, unknown, and so no unique solution exists.

In the solution of generic inverse problems, any one of several
criteria may be employed to admit a unique solution. However, since
out interpolantf̂ exists within the RKHSF and is generated from a
white noise innovation, by the representation theorem for RKHS’s,
minimization ofkfk2F is equivalent to that ofkA+fk2L in the general
Hilbert space [12]. Identifying the Moore–Penrose pseudoinverse of
the operatorA;A+; with L of (1), we see that the optimal interpolant
f may be obtainedvia a simple transformation betweenL2 and the
appropriate RKHS. The choice of the minimum norm optimality
criterion is thus by no meansad hoc, as it selects that solutionmost
consistent with the model of (1).
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IV. OPTIMAL IMAGE INTERPOLATION

CONSISTENT WITH LAPLACE’S EQUATION

It is required to find the self-reproducing kernel of that RKHS
which produces an interpolant that honors the sample points and
while also satisfying Laplace’s equation. A further physical constraint
is imposed which requires that the field tend to zero magnitude as
the distance from the sources approaches infinity.

Rather than specify the initial, terminal and boundary conditions
separately, we include them implicitly within the kernel function. This
is simply due to the extreme simplicity of the BV’s in the present
case. Consequently, the interpolation goal becomes (cf. [10, (3.1)] )

min(Lf̂) 2  L2(
� I) dx dy dzjLf̂(x; y; z)j2: (4)

The initial-terminal conditions onz; of (3), whenL is chosen as
the 3-D Laplacian operator and the field is zero at infinity, are

Lf(x; y; 0) = f(x; y;1) = Lf(x; y;1) = 0: (5)

Comparing (3) and (5), it can be seen that no values at the boundary
� are specified. As we will see, these values are not needed to
find a unique interpolant̂f: The final criterion which states that the
interpolant must agree with the samples at each sample point is given
simply by (2).

A. Derivation of Kernel

To solve the partial differential equation

LyLG(x; y; z) = �(x) �(y) �(z) (6)

for the fundamental solutionG; it is most convenient to work in
Fourier space. Our conventions for the Fourier transform are

G(x; y; z) = dkx dky dkz e
j(k x+k y+k z)

�G(kx; ky; kz) (7)

wherekx; ky; kz are spatial wavenumbers.
We must now apply the operatorLyL to this function to find

G(kx; ky; kz):
Since the operatorL is self-adjoint,LyL = L2; and application of

the operatorr2(x; y; z) to (7) yields

L2G(x; y; z) = dkx dky dkze
j(k x+k y+k z)

�G(k2x; k
2
y; k

2
z)[k2x + k2y + k2z ]2: (8)

Comparing this expression with the Fourier transform of the Dirac
delta distribution

�(x) �(y) �(z) =
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2�
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2�
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it is obvious that

G(x; y; z) =
dkx
2�

dky
2�

dkz
2�

ej(k x+k y+k z)

(k2x + k2y + k2z)2
: (10)

Equation (10) gives the fundamental solution (Green’s function) of
the differential equation (6). Since we have already addressed the BV
and ITV conditions, the kernel is equal to the fundamental solution

and we defineK(x; y; z) = G(x; y; z) (cf. [10, (3.10)]).
Only harmonic functions may be represented in terms of this basis,

in the second Sobolev RKHS which it spans. In addition, all functions
represented in terms of this basis vanish as the vertical(z) distance
from the sources approaches infinity.

B. Integrating the Kernel Analytically

As it stands, the functionG given in (10) is not defined. There is
a singularity lying on the integration contour atkx = ky = kz: To
define this, we need to stipulate how to treat this pole. We define the
integral by picking up the residue of the pole atkz = j k2x + k2y:

We requirekx andky to be real. This prescription is indicated by
the boundary conditions.

After defining the variables k = k2x + k2y and
� = arctan(ky=kx); we perform the factorizationk2x + k2y + k2z =
[kz�j!k][kz +j!k]; where!k = k2x+k2y: We then integrate overk
and then� yielding the final expression for the reproducing kernel as

G =
1

4(2�)2

2�

0

d�[ln(�(j cos(�)x + j sin(�)y � z))

� [(�(j cos(�)x + j sin(�)y � z)) + z]

� (�(j cos(�)x + j sin(�)y � z))]]: (11)

V. ALGORITHM IMPLEMENTATION

[10, Th. A], states that the optimal solution to the interpolation
problem may be expressed as

v� =

l

i=i

N

j=1

bijK(xij ; yij ; zi; x; y; z) (12)

where the coefficientsbij
n
j=1;

L
i=1 are uniquely determined by

interpolation conditions of consistency with theNi measurement
points and specified boundary values.

In our case, where the BV’s and ITV’s are included in the kernel,
the bij may be calculated as the solution to the equation

L

i=1

N

j=1

bijK(xpq � xij ; ypq � yij ; zp � zi) = apq

q = 1; � � � ; np; p = 1; � � � ; l (13)

whereNm denotes the number of measurement points in the image at
the measurement planez = L: Equation (13) may also be expressed
in matrix form as

K(pq;ij)bij = apq: (14)

In summary, the following matrix expression yields the valuesv̂rs
at the interpolated points:

v̂rs = K(rs;ij)K
�1
(pq;ij)apq: (15)

From this equation, it is clear that the sample space is first mapped
into the range ofK�1

(pq;ij); a matrix of kernel functions whose
arguments involve the differences between the measurement point
coordinates, and then into the range ofK(rs;ij); whose arguments
consist of the differences between theNi interpolated point coordi-
nates and those of the measurement points.

The algorithm requires the calculation of the elements of the
Nm �Nm matrix K�1

(pq;ij) and theNi �Nm matrix K(rs;ij): Each
element requires the numerical integration of the kernel function, and
the filling of these matrices is consequently very computationally
intensive. An adaptive recursive Newton–Cotes eight panel rule is
used to perform the integration.

The matrix inversion required in (15) is expensive in terms
of both computation and storage if the number of measurement
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Fig. 1. Test I: With regular spacing, RKHS method yields superior results.

TABLE I
PARAMETERS FOR TEST I

points used is very large. Overall, computational burden increases
asO(N3

m + Nm(1 + Ni)):

VI. EXPERIMENTAL EVALUATION OF THE INTERPOLATION METHOD

Synthetically generated magnetic potential field data are used to
evaluate the performance of the RKHS interpolation method. The
images consist of the combined contributions of the fields of vertical
sided anomalies of infinite depth extent. The formulae applied for
the generation of this data are due to [13]. The data consist of points
irregularly sampled from a 65� 65 pixel image.

TABLE II
PARAMETERS FOR TEST II

The performance of a commercial geophysical interpolation pack-
age employing bicubic spline methods is used as a reference for this
comparative study.

Figs. 1 (Test I) and 2 (Test II), compare RKHS and cubic spline
interpolants for test parameters specified in Tables I and II. Visual
inspection reveals that the RKHS interpolation algorithm produces
superior results. This is borne out by the sum of squared differences
statistics in Table III.
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Fig. 2. Test II: With irregular spacing, RKHS method yields vastly superior results.

TABLE III
RESULTS FORCOMPARATIVE ANALYSIS (TEST II)

In this example, the RKHS method requires 1270 Mflops, executing
in a time of 102 min on a Sun Ultra II under Matlab 5.

VII. CONCLUSION

The optimal interpolation method originally introduced by Chen
and de Figueiredo has been applied, using the nonseparable 3-D
Laplace operator, to the problem of potential field interpolation.

The utilization of thea priori knowledge that the measurements
represent samples of an harmonic field, leads to interpolant qualita-
tively superior to bicubic spline methods, where only the smoothness
of the interpolant is guaranteed. The resulting algorithm requires no
manual specification of either smoothness, a dominant orientation
model, or equivalent source layer depth.

It is thought that the major disadvantage of this method, its
computational intensiveness, might be addressed through reduction
to a smaller equivalent data set as advocated by Mendonca and Silva.
This technique is likely to prove helpful in the present case, as it has
ameliorated the very similar computational problems encountered in
the implementation of the equivalent source method [5].
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MAP Image Restoration and
Segmentation by Constrained Optimization

Stan Z. Li

Abstract—The combinatorial optimization problem of MAP estimation
is converted to one of constrained real optimization and then solved by
using the proposed augmented Lagrange–Hopfield (ALH) method. The
ALH effectively overcomes instabilities that are inherent in the penalty
method or the Lagrange multiplier method in constrained optimization.
It produces good solutions with reasonable costs.

Index Terms—Augmented Lagrange method, combinatorial optimiza-
tion, constrained optimization, graded Hopfield networks, Markov ran-
dom fields (MRF’s), maximum a posteriori.

I. INTRODUCTION

The aim of image restoration is to recover a degraded image and
that of image segmentation is to partition an image into regions
of similar image properties. Efficient restoration and segmentation
are very important for numerous image analysis applications. Both
problems can be posed generally as one of image estimation where
the underlying image or segmentation map is to be estimated from
the degraded image. Due to various uncertainties, an optimal solution
is sought. A popular optimality criterion is the maximuma posteriori
(MAP) probability principle in which both the prior distribution of
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the true image class and the conditional (likelihood) distribution
of the data are taken into account. Contextual constraints, i.e.,
constraints between pixels, are important in image analysis. Markov
random fields (MRF’s) or equivalently Gibbs distributions provide
a convenient tool for modeling prior distributions of images which
encode contextual constraints. Maximizing the posterior is equivalent
to minimizing the energy function in the Gibbs distribution. The MAP
principle and MRF together form the MAP-MRF framework [1], [2].

When the pixels of the image to be recovered take discrete
values, as is the case dealt with in this paper, the minimization is
combinatorial. Discrete optimization methods often used in statistical
image analysis include the iterative conditional modes (ICM) [3] and
simulated annealing (SA) [1], [4]. Other discrete algorithms include
the highest confidence first (HCF) [5]. The deterministic algorithms
of ICM and HCF quickly converge to a local energy minimum but
are dependent largely on the initial configuration. The stochastic SA
with a slow enough schedule finds a global solution with probability
approaching one but is well-known to be expensive.

A combinatorial optimization can often be converted into a con-
strained real optimization with equality and inequality constraints.
The penalty and the Lagrange multiplier methods can be used for
coping with equality constraints and the barrier method for coping
with inequality constraints. However, the penalty method suffers
from the ill-conditioning and the Lagrange method suffers from the
zigzagging problem [6]. The augmented Lagrange (AL) method [7]
combines both the Lagrange and the penalty methods and effectively
overcomes the associated problems. In AL, the relative weight for the
penalty terms need not be infinitely large, this not only overcoming
the ill-conditioning problem but also beneficial for obtaining better
quality solutions because the relative importance of the original
objective function is more emphasized; on the other hand, its use of
quadratic penalty terms “convexifies” and hence stabilizes the system,
overcoming the zigzagging problem [6].

Mean field annealing (MFA) [8] provides still another continuous
method. Assuming that the minima of the original energy and the
corresponding mean field effective energy coincide, the MFA aims to
approximate the global minimum of the original energy by tracking
that of the effective energy with decreasing temperature. A recent
analysis shows that the effective energy of MFA is identical to a
combination of the original energy, a particular barrier term and a
standard Lagrange term [9].

In this work, we present another deterministic method, called the
augmented Lagrange–Hopfield (ALH) method, for the combinatorial
optimization in the MAP-MRF image restoration and segmentation.
In solving the converted constrained real optimization, the ALH
method uses the augmented Lagrangian multiplier method [7] to
satisfy the equality constraints and the Hopfield network encoding
[10] to impose the inequality constraints. The use of AL effectively
overcomes instabilities inherent in the penalty method and the La-
grange multiplier method. The resulting algorithm solves a system of
differential equations. Experimental results in both image restoration
and segmentation are shown to compare the ALH method with the
ICM, HCF, and SA. The results show that the ALH outperforms ICM
and HCF, and is comparable to SA in terms of the solution quality;
it quickly yields a good solution after a dozen of iterations, a number
similar to that required by ICM and HCF but much smaller than SA.
A discussion on MFA results is also provided.

The rest of the correspondence is organized as follows. Section II
describes the ALH method after introducing the MAP-MRF formula-
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